
Practical Web Service Composition with
Parametric Design

James Scicluna

STI Innsbruck, Austria
james.scicluna@sti2.at

Abstract. Web Service composition is one of the central topics in ser-
vice oriented architectures. While industry heavily relies on static com-
position - through the use of process modelers and execution languages
- academia focus more on the dynamic aspect - using search techniques
to look for a solution. In this work, we attempt to leverage between the
static and dynamic approaches using a Parametric Design methodology.
Templates of service bundles define the skeleton and parameters and
constraints within the bundle define the requirements over the needed
services. We do this work in the context of the seekda service platform.

1 Introduction

In this work, we will tackle problems around web service composition, an open
research topic in the realm of service oriented architectures (SOA). Service com-
position takes the nature of static, dynamic and at times hybrid. The first is
more popular in industry settings; the latter two are still a popular open topic
of research in academia. Static composition demands substantial human effort
and is time consuming, and thus is undesirable in a dynamic environment such
as that of an SOA. On the other hand, dynamic composition is mostly done in an
automatic fashion. This is a hard problem in general, often requiring a relaxation
of the problem or ignoring a subset of the constraints. We will leverage between
the static and dynamic approaches and in particular focus on starting with a
composition/process template and iteratively refine it until a complete solution
is reached. We call this solution a service bundle. This process will be performed
using a Parametric Design methodology[5] which - with adequate search meth-
ods that we will develop - iteratively refines a template until all parameters and
constraints are fulfilled. Our aim is to make the service composition as practical
as possible in an industry setting. We will use the seekda1 service platform to
test our solutions.

In the rest of the document, we will first describe the current state of the art
in service composition - Section 2 - and proceed with an outline of our solution
and approach to the problem - Section 3. Section 4 concludes.

1 http://seekda.com/



2 State of the Art

We now review both static and dynamic approaches for service composition. We
start with notations and tools followed by executable composition languages. The
most popular notation to model processes is claimed to be BPMN2, a graphi-
cal representation allowing creating business processes in a workflow-style. It
supports business process management for both business and technical users.
Another popular notation is EPC which is a graph-based approach - in contrast
to BPMN, which is block-based. EPC allows various connectors for alternative
and parallel execution of processes and it uses logical operators such as OR,
AND, and XOR. While BPMN is more intuitive, EPC is formally defined avoid-
ing potential ambiguity problems which may arise in BPMN. These notations
do not allow to express parameters and constraints required for composition to
take place.

One of the most widely used tools for graphical representation of processes
is Enterprise Architect. This tool provides a comprehensive platform to model
software components and services using standard UML. This is a more generic
tool and not directly focused on business processes. Furthermore, it does not
integrate any composition approach or annotations for the processes. Maestro
for BPMN [1] (from SAP Research) integrates semantic technologies with an
industry-level application for annotating processes and composing services. How-
ever, it employs a fully automatic composer which generally results in a sequence
of web services that need to be re-arranged by a process engineer. Another re-
search effort for semantically modelling processes is WSMO-Studio, in particular
the Business Process Modelling Ontology (BPMO) Plugin. This plugin has been
developed within the European Integrated Project, SUPER3. It allows to seman-
tically annotate processes as well as discovering goal tasks using a composition
tool developed with the same project [2]. This is an open source project and
purely academic and its current status (together with the semantic technologies
it employs) are currently infeasible to be used within an industrial productive
setting.

BPEL4WS [6] is an executable process language proposed by IBM and Mi-
crosoft. It allows creating abstract and concrete specifications. At the abstract
level, a process is described in terms of entities that participate in the interaction
(through the use of roles). At the concrete level, bindings to actual services are
defined in order to provide the actual functionality required during the execu-
tion (usually through WSDL). BPEL4WS is claimed to be the most widely used
execution language within industry. Another approach emerging from the World
Wide Web Consortium (W3C) is WS-CDL[10]. This language allows specifying
interactions from a global perspective, rather than from the view of a single en-
tity (the approach taken by BPEL). This language is not however yet so widely
used. We envision such an executable language to be the result of a fulfilled

2 http://www.bpmn.or
3 http://www.ip-super.org



service bundle, ready for execution. In this sense, we do not go beyond the state
of the art but simply adapt existing technologies.

What follows are dynamic approaches for service composition. As mentioned
earlier, one possibility is to start from a skeleton (or template) of a process and
constantly refine it until a solution is reached. The refinement is performed us-
ing some problem solving technique such as Extend-Model-then-Revise (EMR),
Complete-Model-then-Revise (CMR), Hill Climbing (CMR-HC) and CMR-A*[5].
To best of our knowledge, there is just one piece of work that directly uses Para-
metric Design for the Web Services composition[9]. In this work, a complex Web
service is described as a template that must be configured for some specific use.
The problem solving method they use is called Propose-Critique-Modify. The
solution template is based on the OWL-S but the actual broker that refines the
solution template is implemented in Prolog. Although an adequate configuration
is reached, the broker requires a substantial amount of high quality knowledge
which may not be available in the typical Web Services scenarios. Also, candi-
date configurations are tested by executing them which is not desirable in real
world settings where the effects of execution are sometimes irreversible.

Similar ideas to the concept of template refinement can also be found in
[4, 3]. In [4], Golog is augmented, combining online execution of information-
providing Web Services with offline simulation of those that alter the real world.
This is achieved through the implementation of generic procedures. In [3], ab-
stract BPEL4WS descriptions are semantically translated (hence, bottom-up
approach). Reasoning is performed over these semantic descriptions such that
adequate Web services are discovered. These approaches are quite generic and
generally inefficient, thus making them infeasible for practical service composi-
tion..

Perhaps, the most widely spread approaches towards composition are those
that employ A.I. Planning techniques Traditional approaches attempt to search
for a solution by constructing the composite process from scratch (typically using
an Artificial Intelligence Planning approach)[4, 7, 8]. The result is a sequence of
Web Services that achieve the desired goal. However, such a solution would be
in many cases inadequate: fault-handling is ignored due to the sequential nature
of the solution and due to the fact that dealing with this aspect is hard in
general; names of inputs/outputs must precisely match and thus solutions that
may actually exist (e.g., through a subsumption relation between parameters)
are not found; there is no notion of parallel execution. Some of these problems
have been tackled [2] by a trade-off between expressivity and scalability. Still, in
most practical scenarios, the resulting solution is not adequate and thus requires
a Process Designer to remodel the process as needed.

3 Proposed Solution and Approach

As stated, our objective is to leverage between static and dynamic composition.
Concretely, our objectives are the following:



– adapt (and possibly further develop) an existing semantic language that is
expressive enough to describe constraints in process templates but simple
enough to not hamper efficiency of the composition

– extend an existing graphical notation for describing processes, accommodat-
ing the developed parameter language

– design efficient refinement algorithms for fulfilling parameters and constraints
of the process templates, taking particular care to scalability; [2] is of par-
ticular importance in this respect

– evaluate these methods over different scenarios

In order to achieve these targets, we will develop a Bundle Configurator
& Assistant tool that enables the creation of templates, editing of parameters
and constraints and assists in the fulfilment of the template using Parametric
Design. The development of this tool will proceed in the order of our mentioned
targets. To illustrate our vision of the templates and the generation of service
bundles, we describe a hotel brokering scenario (Figure 1). The example shows
a typical process template - the starting point for the composition - followed by
the resulting service bundle.

Fig. 1. An example of a template refinement process.

At the template level, the process is very simple. A Business Analyst defines
the process in its primitive form, the start and end nodes and the checking and
advertise tasks. These tasks provide a very high level description of what the
process must do. Additional constraints are specified, for example, a Technical
Process Designer specifies that these actions must be performed in an authorised
way. A Marketing Manager further specifies that the profit-margin obtained



from advertising on a channel must be greater than some value. The generated
process defines first a ”Receive” action which receives a request from the Hotelier
to start updating the respective channels. The process deals with two channels
which are updated in a parallel fashion. There is a considerable difference in
the behaviour of each channel. For Expedia, credentials must be sent each time
there’s communication taking place, but this is not the case for hotel.de, in
which opening a session would be just enough. In any case, both sub-processes
communicate in an authorised manner, as defined by the initial constraint of
the bundle template. In both sub-processes, the profit margin constraint is dealt
with a branching control flow.

4 Conclusion

Although this work is in its early stages, we believe that Parametric Design
methodologies are very adequate to address service composition in an effective
way. We shall investigate the usage of appropriate parameter languages and
afterwards develop efficient algorithms for fulfilling the constraints specified by
such a language. Finally, we will evaluate our results on a real industry setting.

References

1. M. Börn, J. Hoffmann, T. Kaczmarek, M. Kowalkiewicz, I. Markovic, J. Scicluna,
I. Weber, and X. Zhou. Semantic annotation and composition of business pro-
cesses with maestro. In Proceedings of the 5th European Semantic Web Conference
(ESWC’08), 2008.

2. J. Hoffmann, I. Weber, J. Scicluna, T. Kaczmarek, and A. Ankolekar. Combining
scalability and expressivity in the automatic composition of semantic web ser-
vices. In Proceedings of the 8th International Conference on Web Engineering
(ICWE’08), Yorktown Heights, USA, July 2008.

3. D. Mandell and S. McIlraith. Adapting BPEL4WS for the Semantic Web: The
Bottom-Up Approach to Web Service Interoperation. In Proc. of ISWC’03, 2003.

4. S. McIlraith and T. Cao Son. Adapting Golog for composition of semantic Web
services. In Proc. of the 8th Int. Conf. on Principles and Knowledge Representation
and Reasoning (KR-02), Toulouse, France, 2002.

5. E. Motta and Z. Zdrahal. Parametric design problem solving. Technical report,
The Open University, XXXX.

6. OASIS. Web Services Business Process Execution Language, August 2006.
7. M. Pistore, P. Traverso, and P. Bertoli. Automated Composition of Web Services

by Planning in Asynchronous Domains. In Proc. ICAPS’05, 2005.
8. K. Sycara, M. Paolucci, A. Ankolekar, and N. Srinivasan. Automated discovery,

interaction and composition of semantic web services. Journal of Web Semantics,
1(1):27–46, 2003.

9. A. ten Teije, F. van Harmelen, and B. Wielinga. Configuration of web services as
parametric design. In Proceedings of the International Conference on Knowledge
Engineering and Knowledge Management, 2004.

10. W3C. Web Services Choreography Description Language, Version 1.0, 2005. W3C
Recommended Draft 9 November 2005.


